
Stata Tutorial
Updated for Version 16

https://data.princeton.edu/stata

Germán Rodríguez
Princeton University

September 2019

1 Introduction
Stata is a powerful statistical package with smart data-management facilities, a wide array of
up-to-date statistical techniques, and an excellent system for producing publication-quality
graphs. Stata is fast and easy to use. In this tutorial I start with a quick introduction and
overview and then discuss data management, statistical graphs, and Stata programming.

The tutorial has been updated for version 16, but most of the discussion applies to versions
8 and later. Version 14 added Unicode support, which will come handy when we discuss
multilingual labels in Section 2.3. Version 15 included, among many new features, graph
color transparency or opacity, which we’ll use in Section 3.3. Version 16 introduced frames,
which allow keeping multiple datasets in memory, as noted in Section 2.6.

1.1 A Quick Tour of Stata
Stata is available for Windows, Unix, and Mac computers. This tutorial was created
using the Windows version, but most of the contents applies to the other platforms as
well. The standard version is called Stata/IC (or Intercooled Stata) and can handle up to
2,047 variables. There is a special edition called Stata/SE that can handle up to 32,766
variables (and also allows longer string variables and larger matrices), and a version for
multicore/multiprocessor computers called Stata/MP, which allows larger datasets and is
substantially faster. The number of observations is limited by your computer’s memory, as
long as it doesn’t exceed about two billion in Stata/SE and about a trillion in Stata/MP.
Stata 16 can be installed only on 64-bit computers; previous versions were available for both
older 32-bit and newer 64-bit computers. All of these versions can read each other’s files
within their size limits. (There used to be a small version of Stata, limited to about 1,000
observations on 99 variables, but as of version 15 it is no longer available.)

1.1.1 The Stata Interface

When Stata starts up you see five docked windows, initially arranged as shown in the figure
below.

1

https://data.princeton.edu/stata

The window labeled Command is where you type your commands. Stata then shows the
results in the larger window immediately above, called appropriately enough Results. Your
command is added to a list in the window labeled History on the left (called Review in
earlier versions), so you can keep track of the commands you have used. The window labeled
Variables, on the top right, lists the variables in your dataset. The Properties window
immediately below that, introduced in version 12, displays properties of your variables and
dataset.

You can resize or even close some of these windows. Stata remembers its settings the next
time it runs. You can also save (and then load) named preference sets using the menu
Edit|Preferences. I happen to like the Compact Window Layout. You can also choose the
font used in each window, just right click and select font from the context menu. Finally, it
is possible to change the color scheme under General Preferences. You can select one of four
overall color schemes: light, light gray, blue or dark. You can also choose one of seven preset
or three customizable styles for the Results and Viewer windows.

There are other windows that we will discuss as needed, namely the Graph, Viewer, Variables
Manager, Data Editor, and Do file Editor.

Starting with version 8 Stata’s graphical user interface (GUI) allows selecting commands
and options from a menu and dialog system. However, I strongly recommend using the
command language as a way to ensure reproducibility of your results. In fact, I recommend
that you type your commands on a separate file, called a do file, as explained in Section
1.2 below, but for now we will just type in the command window. The GUI can be helpful
when you are starting to learn Stata, particularly because after you point and click on the

2

menus and dialogs, Stata types the corresponding command for you.

1.1.2 Typing Commands

Stata can work as a calculator using the display command. Try typing the following (you
may skip the dot at the start of a line, which is how Stata marks the lines you type):

. display 2+2
4
. display 2 * ttail(20, 2.1)
.04861759

Stata commands are case-sensitive, display is not the same as Display and the latter will
not work. Commands can also be abbreviated; the documentation and online help underlines
the shortest legal abbreviation of each command, and we will do the same here.

The second command shows the use of a built-in function to compute a p-value, in this case
twice the probability that a Student’s t with 20 d.f. exceeds 2.1. This result would just
make the 5% cutoff. To find the two-tailed 5% critical value try display invttail(20,
0.025). We list a few other functions you can use in Section 2.

If you issue a command and discover that it doesn’t work, press the Page Up key to recall it
(you can cycle through your command history using the Page Up and Page Down keys) and
then edit it using the arrow, insert and delete keys, which work exactly as you would expect.
For example Arrows advance a character at a time and Ctrl-Arrows advance a word at a
time. Shift-Arrows select a character at a time and Shift-Ctrl-Arrows select a word at a
time, which you can then delete or replace. A command can be as long as needed (up to
some 64k characters); in an interactive session you just keep on typing and the command
window will wrap and scroll as needed.

1.1.3 Getting Help

Stata has excellent online help. To obtain help on a command (or function) type help
command_name, which displays the help on a separate window called the Viewer. (You can
also type chelp command_name, which shows the help on the Results window; but this is
not recommended.) Or just select Help|Command on the menu system. Try help ttail.
Each help file appears in a separate viewer tab (a separate window before Stata 12) unless
you use the option , nonew.

If you don’t know the name of the command you need, you can search for it. Stata has
a search command that will search the documentation and other resources, type help
search to learn more. By default this command searches the net in Stata 13 and later. If
you are using an earlier version, learn about the findit command. Also, the help command
reverts to a search if the argument is not recognized as a command. Try help Student's
t. This will list all Stata commands and functions related to the t distribution. Among
the list of “Stat functions” you will see t() for the distribution function and ttail() for
right-tail probabilities. Stata can also compute tail probabilities for the normal, chi-squared
and F distributions, among others.

3

One of the nicest features of Stata is that, starting with version 11, all the documentation is
available in PDF files. (In fact, since version 13 you can no longer get printed manuals.)
Moreover, these files are linked from the online help, so you can jump directly to the relevant
section of the manual. To learn more about the help system type help help.

1.1.4 Loading a Sample Data File

Stata comes with a few sample data files. You will learn how to read your own data into
Stata in Section 2, but for now we will load one of the sample files, namely lifeexp.dta,
which has data on life expectancy and gross national product (GNP) per capita in 1998 for
68 countries. To see a list of the files shipped with Stata type sysuse dir. To load the file
we want type sysuse lifeexp (the file extension is optional so I left it out). To see what’s
in the file type describe. (This command can be abbreviated to a single letter, but I prefer
desc.)

. sysuse lifeexp, clear
(Life expectancy, 1998)
. desc
Contains data from C:\Program Files\Stata16\ado\base/l/lifeexp.dta

obs: 68 Life expectancy, 1998
vars: 6 26 Mar 2018 09:40

(_dta has notes)

storage display value
variable name type format label variable label

region byte %12.0g region Region
country str28 %28s Country
popgrowth float %9.0g * Avg. annual % growth
lexp byte %9.0g * Life expectancy at birth
gnppc float %9.0g * GNP per capita
safewater byte %9.0g *

* indicated variables have notes

Sorted by:

We see that we have six variables. The dataset has notes that you can see by typing notes.
Four of the variables have annotations that you can see by typing notes varname. You’ll
learn how to add notes in Section 2.

1.1.5 Descriptive Statistics

Let us run simple descriptive statistics for the two variables we are interested in, using
the summarize command followed by the names of the variables (which can be omitted to
summarize everything):

. summarize lexp gnppc
Variable Obs Mean Std. Dev. Min Max

lexp 68 72.27941 4.715315 54 79
gnppc 63 8674.857 10634.68 370 39980

We see that live expectancy averages 72.3 years and GNP per capita ranges from $370 to
$39,980 with an average of $8,675. We also see that Stata reports only 63 observations on
GNP per capita, so we must have some missing values. Let us list the countries for which

4

we are missing GNP per capita:
. list country gnppc if missing(gnppc)

country gnppc

7. Bosnia and Herzegovina .
40. Turkmenistan .
44. Yugoslavia, FR (Serb./Mont.) .
46. Cuba .
56. Puerto Rico .

We see that we have indeed five missing values. This example illustrates a powerful feature of
Stata: the action of any command can be restricted to a subset of the data. If we had typed
list country gnppc we would have listed these variables for all 68 countries. Adding the
condition if missing(gnppc) restricts the list to cases where gnppc is missing. Note that
Stata lists missing values using a dot. We’ll learn more about missing values in Section 2.

1.1.6 Drawing a Scatterplot

To see how life expectancy varies with GNP per capita we will draw a scatter plot using
the graph command, which has a myriad of subcommands and options, some of which we
describe in Section 3.

. graph twoway scatter lexp gnppc

. graph export scatter.png, width(500) replace
(file scatter.png written in PNG format)

The plot shows a curvilinear relationship between GNP per capita and life expectancy. We
will see if the relationship can be linearized by taking the log of GNP per capita.

5

1.1.7 Computing New Variables

We compute a new variable using the generate command with a new variable name and an
arithmetic expression. Choosing good variable names is important. When computing logs I
usually just prefix the old variable name with log or l, but compound names can easily
become cryptic and hard-to-read. Some programmers separate words using an underscore,
as in log_gnp_pc, and others prefer the camel-casing convention which capitalizes each word
after the first: logGnpPc. I suggest you develop a consistent style and stick to it. Variable
labels can also help, as described in Section 2.

To compute natural logs we use the built-in function log:
. gen loggnppc = log(gnppc)
(5 missing values generated)

Stata says it has generated five missing values. These correspond to the five countries
for which we were missing GNP per capita. Try to confirm this statement using the list
command. We will learn more about generating new variables in Section 2.

1.1.8 Simple Linear Regression

We are now ready to run a linear regression of life expectancy on log GNP per capita. We
will use the regress command, which lists the outcome followed by the predictors (here
just one, loggnppc)

. regress lexp loggnppc
Source SS df MS Number of obs = 63

F(1, 61) = 97.09
Model 873.264865 1 873.264865 Prob > F = 0.0000

Residual 548.671643 61 8.99461709 R-squared = 0.6141
Adj R-squared = 0.6078

Total 1421.93651 62 22.9344598 Root MSE = 2.9991

lexp Coef. Std. Err. t P>|t| [95% Conf. Interval]

loggnppc 2.768349 .2809566 9.85 0.000 2.206542 3.330157
_cons 49.41502 2.348494 21.04 0.000 44.71892 54.11113

Note that the regression is based on only 63 observations. Stata omits observations that
are missing the outcome or one of the predictors. The log of GNP per capita accounts for
61% of the variation in life expectancy in these countries. We also see that a one percent
increase in GNP per capita is associated with an increase of 0.0277 years in life expectancy.
(To see this point note that if GNP increases by one percent its log increases by 0.01.)

Following a regression (or in fact any estimation command) you can retype the command
with no arguments to see the results again. Try typing reg.

1.1.9 Post-Estimation Commands

Stata has a number of post-estimation commands that build on the results of a model fit.
A useful command is predict, which can be used to generate fitted values or residuals
following a regression. The command

6

. predict plexp
(option xb assumed; fitted values)
(5 missing values generated)

generates a new variable, plexp, that has the life expectancy predicted from our regression
equation. No predictions are made for the five countries without GNP per capita. (If
life expectancy was missing for a country it would be excluded from the regression, but a
prediction would be made for it. This technique can be used to fill-in missing values.)

1.1.10 Plotting the Data and a Linear Fit

A common task is to superimpose a regression line on a scatter plot to inspect the quality
of the fit. We could do this using the predictions we stored in plexp, but Stata’s graph
command knows how to do linear fits on the fly using the lfit plot type, and can superimpose
different types of twoway plots, as explained in more detail in Section 3. Try the command

. graph twoway (scatter lexp loggnppc) (lfit lexp loggnppc)

. graph export fit.png, width(500) replace
(file fit.png written in PNG format)

In this command each expression in parenthesis is a separate two-way plot to be overlayed
in the same graph. The fit looks reasonably good, except for a possible outlier.

1.1.11 Listing Selected Observations

It’s hard not to notice the country on the bottom left of the graph, which has much lower
life expectancy than one would expect, even given its low GNP per capita. To find which
country it is we list the (names of the) countries where life expectancy is less than 55:

. list country lexp plexp if lexp < 55, clean
country lexp plexp

50. Haiti 54 66.06985

7

We find that the outlier is Haiti, with a life expectancy 12 years less than one would expect
given its GNP per capita. (The keyword clean after the comma is an option which omits the
borders on the listing. Many Stata commands have options, and these are always specified
after a comma.) If you are curious where the United States is try

. list gnppc loggnppc lexp plexp if country == "United States", clean
gnppc loggnppc lexp plexp

58. 29240 10.28329 77 77.88277

Here we restricted the listing to cases where the value of the variable country was “United
States”. Note the use of a double equal sign in a logical expression. In Stata x = 2 assigns
the value 2 to the variable x, whereas x == 2 checks to see if the value of x is 2.

1.1.12 Saving your Work and Exiting Stata

To exit Stata you use the exit command (or select File|Exit in the menu, or press Alt-F4,
as in most Windows programs). If you have been following along this tutorial by typing the
commands and try to exit Stata will refuse, saying “no; data in memory would be lost”. This
happens because we have added a new variable that is not part of the original dataset, and
it hasn’t been saved. As you can see, Stata is very careful to ensure we don’t loose our work.

If you don’t care about saving anything you can type exit, clear, which tells Stata to
quit no matter what. Alternatively, you can save the data to disk using the save filename
command, and then exit. A cautious programmer will always save a modified file using a
new name.

1.2 Using Stata Effectively
While it is fun to type commands interactively and see the results straightaway, serious work
requires that you save your results and keep track of the commands that you have used, so
that you can document your work and reproduce it later if needed. Here are some practical
recommendations.

1.2.1 Create a Project Directory

Stata reads and saves data from the working directory, usually C:\DATA, unless you specify
otherwise. You can change directory using the command cd [drive:]directory_name, and
print the (name of the) working directory using pwd, type help cd for details. I recommend
that you create a separate directory for each course or research project you are involved in,
and start your Stata session by changing to that directory.

Stata understands nested directory structures and doesn’t care if you use \ or / to separate
directories. Versions 9 and later also understand the double slash used in Windows to
refer to a computer, so you can cd \\server\shares\research\myProject to access a
shared project folder. An alternative approach, which also works in earlier versions, is
to use Windows explorer to assign a drive letter to the project folder, for example assign
P: to \\server\shares\research\myProject and then in Stata use cd p:. Alternatively,
you may assign R: to \\server\shares\research and then use cd R:\myProject, a more
convenient solution if you work in several projects.

8

Stata has other commands for interacting with the operating system, including mkdir to
create a directory, dir to list the names of the files in a directory, type to list their contents,
copy to copy files, and erase to delete a file. You can (and probably should) do these tasks
using the operating system directly, but the Stata commands may come handy if you want
to write a script to perform repetitive tasks.

1.2.2 Open a Log File

So far all our output has gone to the Results window, where it can be viewed but eventually
disappears. (You can control how far you can scroll back, type help scrollbufsize to
learn more.) To keep a permanent record of your results, however, you should log your
session. When you open a log, Stata writes all results to both the Results window and to
the file you specify. To open a log file use the command

log using filename, text replace

where filename is the name of your log file. Note the use of two recommended options: text
and replace.

By default the log is written using SMCL, Stata Markup and Control Language (pronounced
“smickle”), which provides some formatting facilities but can only be viewed using Stata’s
Viewer. Fortunately, there is a text option to create logs in plain text format, which can be
viewed in an editor such as Notepad or a word processor such as Word. (An alternative is
to create your log in SMCL and then use the translate command to convert it to plain
text, postscript, or even PDF, type help translate to learn more about this option.)

The replace option specifies that the file is to be overwritten if it already exists. This will
often be the case if (like me) you need to run your commands several times to get them
right. In fact, if an earlier run has failed it is likely that you have a log file open, in which
case the log command will fail. The solution is to close any open logs using the log close
command. The problem with this solution is that it will not work if there is no log open!
The way out of the catch 22 is to use

capture log close

The capture keyword tells Stata to run the command that follows and ignore any errors.
Use judiciously!

1.2.3 Always Use a Do File

A do file is just a set of Stata commands typed in a plain text file. You can use Stata’s own
built-in do-file Editor, which has the great advantage that you can run your program directly
from the editor by clicking on the run icon, selecting Tools|Execute (do) from the menu,
or using the shortcut Ctrl-D. The run icon can also be used to run selected commands
and does it smartly: if you have selected some text it will extend the selection to include
complete lines and then will run those commands, if there is no selection it runs the entire
script. To access Stata’s do editor use Ctrl-9 in versions 12 and later (Ctrl-8 in earlier
versions) or select Window|Do-file Editor|New Do-file Editor in the menu system.

9

Alternatively, you can use an editor such as Notepad. Save the file using extension .do and
then execute it using the command do filename. For a thorough discussion of alternative
text editors see http://fmwww.bc.edu/repec/bocode/t/textEditors.html, a page maintained
by Nicholas J. Cox, of the University of Durham.

You could even use a word processor such as Word, but you would have to remember to
save the file in plain text format, not in Word document format. Also, you may find Word’s
insistence on capitalizing the first word on each line annoying when you are trying to type
Stata commands that must be in lowercase. You can, of course, turn auto-correct off. But
it’s a lot easier to just use a plain-text editor.

1.2.4 Use Comments and Annotations

Code that looks obvious to you may not be so obvious to a co-worker, or even to you a few
months later. It is always a good idea to annotate your do files with explanatory comments
that provide the gist of what you are trying to do.

In the Stata command window you can start a line with a * to indicate that it is a comment,
not a command. This can be useful to annotate your output.

In a do file you can also use two other types of comments: // and /* */.

// is used to indicate that everything that follows to the end of the line is a comment and
should be ignored by Stata. For example you could write

gen one = 1 // this will serve as a constant in the model

/* */ is used to indicate that all the text between the opening /* and the closing */, which
may be a few characters or may span several lines, is a comment to be ignored by Stata.
This type of comment can be used anywhere, even in the middle of a line, and is sometimes
used to “comment out” code.

There is a third type of comment used to break very long lines, as explained in the next
subsection. Type help comments to learn more about comments.

It is always a good idea to start every do file with comments that include at least a title,
the name of the programmer who wrote the file, and the date. Assumptions about required
files should also be noted.

1.2.5 Continuation Lines

When you are typing on the command window a command can be as long as needed. In a
do-file you will probably want to break long commands into lines to improve readability.

To indicate to Stata that a command continues on the next line you use ///, which says
everything else to the end of the line is a comment and the command itself continues on the
next line. For example you could write

graph twoway (scatter lexp loggnppc) ///
(lfit lexp loggnppc)

Old hands might write

10

http://fmwww.bc.edu/repec/bocode/t/textEditors.html

graph twoway (scatter lexp loggnppc) /*
*/ (lfit lexp loggnppc)

which “comments out” the end of the line.

An alternative is to tell Stata to use a semi-colon instead of the carriage return at the end
of the line to mark the end of a command, using #delimit ;, as in this example:

#delimit ;
graph twoway (scatter lexp loggnppc)

(lfit lexp loggnppc) ;

Now all commands need to terminate with a semi-colon. To return to using carriage return
as the delimiter use

#delimit cr

The delimiter can only be changed in do files. But then you always use do files, right?

1.2.6 A Sample Do File

Here’s a simple do file that can reproduce all the results in our Quick Tour. The file doesn’t
have many comments because this page has all the details. Following the listing we comment
on a couple of lines that require explanation.

// A Quick Tour of Stata
// Germán Rodríguez - Fall 2019

version 16
clear
capture log close
log using QuickTour, text replace

display 2+2
display 2 * ttail(20,2.1)

// load sample data and inspect
sysuse lifeexp
desc
summarize lexp gnppc
list country gnppc if missing(gnppc)

graph twoway scatter lexp gnppc, ///
title(Life Expectancy and GNP) xtitle(GNP per capita)

// save the graph in PNG format
graph export scatter.png, width(400) replace
gen loggnppc = log(gnppc)
regress lexp loggnppc

predict plexp

graph twoway (scatter lexp loggnppc) (lfit lexp loggnppc) ///
, title(Life Expectancy and GNP) xtitle(log GNP per capita)

11

graph export fit.png, width(400) replace

list country lexp plexp if lexp < 55, clean
list gnppc loggnppc lexp plexp if country == "United States", clean
log close

We start the do file by specifying the version of Stata we are using, in this case 16. This
helps ensure that future versions of Stata will continue to interpret the commands correctly,
even if Stata has changed, see help version for details. (The previous version of this file
read version 15, and I could have left that in place to run under version control; the results
would be the same because none of the commands used in this quick tour has changed.)

The clear statement deletes the data currently held in memory and any value labels you
might have. We need clear just in case we need to rerun the program, as the sysuse
command would then fail because we already have a dataset in memory and we have not
saved it. An alternative with the same effect is to type sysuse lifeexp, clear. (Stata
keeps other objects in memory as well, including saved results, scalars and matrices, although
we haven’t had occasion to use these yet. Typing clear all removes these objects from
memory, ensuring that you start with a completely clean slate. See help clear for more
information. Usually, however, all you need to do is clear the data.)

Note also that we use a graph export command to convert the graph in memory to Portable
Network Graphics (PNG) format, ready for inclusion in a web page. To include a graph in a
Word document you are better off cutting and pasting a graph in Windows Metafile format,
as explained in Section 3.

1.2.7 Stata Command Syntax

Having used a few Stata commands it may be time to comment briefly on their structure,
which usually follows the following syntax, where bold indicates keywords and square brackets
indicate optional elements:

[by varlist:] command [varlist] [=exp] [if exp] [in range] [weight] [using filename] [,options]

We now describe each syntax element:

command : The only required element is the command itself, which is usually (but not always)
an action verb, and is often followed by the names of one or more variables. Stata
commands are case-sensitive. The commands describe and Describe are different,
and only the former will work. Commands can usually be abbreviated as noted earlier.
When we introduce a command we underline the letters that are required. For example
regress indicates that the regress command can be abbreviated to reg.

varlist : The command is often followed by the names of one or more variables, for example
describe lexp or regress lexp loggnppc. Variable names are case sensitive; lexp
and LEXP are different variables. A variable name can be abbreviated to the minimum
number of letters that makes it unique in a dataset. For example in our quick tour
we could refer to loggnppc as log because it is the only variable that begins with
those three letters, but this is a really bad idea. Abbreviations that are unique may
become ambiguous as you create new variables, so you have to be very careful. You

12

can also use wildcards such as v* or name ranges, such as v101-v105 to refer to several
variables. Type help varlist to lear more about variable lists.

=exp : Commands used to generate new variables, such as generate log_gnp = log(gnp),
include an arithmetic expression, basically a formula using the standard operators (+ -
* and / for the four basic operations and ˆ for exponentiation, so 3ˆ2 is three squared),
functions, and parentheses. We discuss expressions in Section 2.

if exp and in range : As we have seen, a command’s action can be restricted to a subset
of the data by specifying a logical condition that evaluates to true of false, such as
lexp < 55. Relational operators are <, <=, ==, >= and >, and logical negation is
expressed using ! or ~, as we will see in Section 2. Alternatively, you can specify a
range of the data, for example in 1/10 will restrict the command’s action to the first
10 observations. Type help numlist to learn more about lists of numbers.

weight : Some commands allow the use of weights, type help weights to learn more.
using filename : The keyword using introduces a file name; this can be a file in your

computer, on the network, or on the internet, as you will see when we discuss data
input in Section 2.

options : Most commands have options that are specified following a comma. To obtain
a list of the options available with a command type help command. where command is
the actual command name.

by varlist : A very powerful feature, it instructs Stata to repeat the command for each
group of observations defined by distinct values of the variables in the list. For this to
work the command must be “byable” (as noted on the online help) and the data must
be sorted by the grouping variable(s) (or use bysort instead).

1.3 Stata Resources
There are many resources available to learn more about Stata, both online and in print.

1.3.1 Online Resources

Stata has an excellent website at https://www.stata.com. Among other things you will find
that they make available online all datasets used in the official documentation, that they
publish a journal called The Stata Journal, and that they have an excellent bookstore with
texts on Stata and related statistical subjects. Stata also offers email and web-based training
courses called NetCourses, see https://www.stata.com/netcourse/.

There is a Stata forum where you can post questions and receive prompt and knowledgeable
answers from other users, quite often from the indefatigable and extremely knowledgeable
Nicholas Cox, who deserves special recognition for his service to the user community. The
list was started by Marcello Pagano at the Harvard School of Public Health, and is now
maintained by StataCorp, see https://www.statalist.org for more information, including
how to participate. Stata also maintains a list of frequently asked questions (FAQ) classified
by topic, see https://www.stata.com/support/faqs/.

UCLA maintains an excellent Stata portal at https://stats.idre.ucla.edu/stata/, with
many useful links, including a list of resources to help you learn and stay up-to-date with

13

dataManagement.html
https://www.stata.com/
https://www.stata.com/netcourse/
https://www.statalist.org
https://www.stata.com/support/faqs/
https://stats.idre.ucla.edu/stata/

Stata, including classes and seminars, learning modules and useful links, not to mention
comparisons with other packages such as SAS and SPSS.

1.3.2 Manuals and Books

The Stata documentation has been growing with each version and now consists of 31 volumes
with more than 15,000 pages, all available in PDF format with your copy of Stata. Here is a
list, with italics indicating new manuals in Stata 16. The basic documentation consists of a
Base Reference Manual, separate volumes on Data Management, Graphics, Reporting, and
Functions; a User’s Guide, a Glossary and Index, and Getting Started with Stata, which has
platform-specific versions for Windows, Macintosh and Unix. Some statistical subjects that
may be important to you are described in ninetten separate manuals: Bayesian Analysis,
Choice Models, Dynamic Stochastic General Equilibrium Models, Extended Regression
Models, Finite Mixture Models, Item Response Theory, Lasso, Longitudinal Data/Panel
Data, Meta Analysis, Multilevel Mixed-Effects, Multiple Imputation, Multivariate Statistics;
Power, Precision and Sample Size; Spatial Autoregressive Models, Structural Equation
Modeling, Survey Data, Survival Analysis, Times Series, and Treatment Effects. Additional
volumes of interest to programmers, particularly those seeking to extend Stata’s capabilities,
are manuals on Programming and on Mata, Stata’s matrix programming language.

A good introduction to Stata is Alan C. Acock’s A Gentle Introduction to Stata, now in
its sixth edition. One of my favorite statistical modeling books is Scott Long and Jeremy
Freese’s Regression Models for Categorical Dependent Variables Using Stata (3rd edition);
Section 2.10 of this book is a set of recommended practices that should be read and followed
faithfully by every aspiring Stata data analyst. Another book I like is Michael Mitchell’s
excellent A Visual Guide to Stata Graphics, which was written specially to introduce the
new graphs in version 8 and is now in its 3rd edition. Two useful (but more specialized)
references written by the developers of Stata are An Introduction to Survival Analysis Using
Stata (revised 3rd edition), by Mario Cleves, William Gould and Julia Marchenko, and
Maximum Likelihood Estimation with Stata (4th edition) by William Gould, Jeffrey Pitblado,
and Brian Poi. Readers interested in programming Stata will find Christopher F. Baum’s
An Introduction to Stata Programming (2nd edition) and William Gould’s The Mata Book:
A Book for Serious Programmers and Those Who Want to Be both invaluable.

2 Data Management
In this section I describe Stata data files, discuss how to read raw data into Stata in free
and fixed formats, how to create new variables, how to document a dataset labeling the
variables and their values, and how to manage Stata system files.

Stata 11 introduced a variables manager that allows editing variable names, labels, types,
formats, and notes, as well as value labels, using an intuitive graphical user interface
available under Data|Variables Manager in the menu system. While the manager is certainly
convenient, I still prefer writing all commands in a do file to ensure research reproducibility.
A nice feature of the manager, however, is that it generates the Stata commands needed to
accomplish the changes, so it can be used as a learning tool and, as long as you are logging

14

the session, leaves a record behind.

2.1 Stata Files
Stata datasets are rectangular arrays with n observations on m variables. Unlike packages
that read one observation at a time, Stata keeps all data in memory, which is one reason
why it is so fast. There’s a limit of 2,047 variables in Stata/IC, 32,767 in Stata/SE, and
120,000 in Stata/MP. You can have as many observations as your computer’s memory will
allow, provided you don’t go too far above 2 billion cases with Stata/SE and 1 trillion with
Stata/MP. (To find these limits type help limits.)

2.1.1 Variable Names

Variable names can have up to 32 characters, but many commands print only 12, and shorter
names are easier to type. Stata names are case sensitive, Age and age are different variables!
It pays to develop a convention for naming variables and sticking to it. I prefer short lowercase
names and tend to use single words or abbreviations rather than multi-word names, for
example I prefer effort or fpe to family_planning_effort or familyPlanningEffort,
although all four names are legal. Note the use of underscores or camel casing to separate
words.

2.1.2 Variable Types

Variables can contain numbers or strings. Numeric variables can be stored as integers (bytes,
integers, or longs) or floating point (float or double). These types differ in the range or
precision of the values they can hold, type help datatype for details.

You usually don’t need to be concerned about the storage mode; Stata does all calculations
using doubles, and the compress command will find the most economical way to store each
variable in your dataset, type help compress to learn more.

You do have to be careful with logical comparisons involving floating point types. If you
store 0.1 in a float called x, you may be surprised to learn that x == 0.1 is never true.
The reason is that 0.1 is “rounded” to different binary numbers when stored as a float (the
variable x) or as a double (the constant 0.1). This problem does not occur with integers or
strings.

String variables can have varying lengths up to 244 characters in Stata 12, or up to two billion
characters in Stata 13 or higher, where you can use str1...str2045 to define fixed-length
strings of up to 2045 characters, and strL to define a long string, suitable for storing plain
text or even binary large objects such as images or word processing documents, type help
strings to learn more. Strings are ideally suited for id variables because they can be
compared without problems.

Sometimes you may need to convert between numeric and string variables. If a variable
has been read as a string but really contains numbers you will want to use the command
destring or the function real(). Otherwise, you can use encode to convert string data

15

into a numeric variable or decode to convert numeric variables to strings. These commands
rely on value labels, which are described below.

2.1.3 Missing Values

Like other statistical packages, Stata distinguishes missing values. The basic missing value
for numeric variables is represented by a dot . Starting with version 8 there are 26 additional
missing-value codes denoted by .a to .z. These values are represented internally as very
large numbers, so valid_numbers < . < .a < ... < .z.

To check for missing you need to write var >= . (not var == .). Stata has a function that
can do this comparison, missing(varname) and I recommend it because it leads to more
readable code, e.g. I prefer list id if missing(age) to list id if age >= .

Missing values for string variables are denoted by "“, the empty string; not to be confused
with a string that is all blanks, such as” ".

Demographic survey data often use codes such as 88 for not applicable and 99 for not
ascertained. For example age at marriage may be coded 88 for single women and 99 for
women who are known to be married but did not report their age at marriage. You will
often want to distinguish these two cases using different kinds of missing value codes. If you
wanted to recode 88’s to .n (for “na” or not applicable) and 99’s to .m (for “missing”) you
could use the code

replace ageAtMar = .n if ageAtMar == 88
replace ageAtMar = .m if ageAtMar == 99

Sometimes you want to tabulate a variable including missing values but excluding not
applicable cases. If you will be doing this often you may prefer to leave 99 as a regular code
and define only 88 as missing. Just be careful if you then run a regression!

Stata ships with a number of small datasets, type sysuse dir to get a list. You can use any
of these by typing sysuse name. The Stata website is also a repository for datasets used in
the Stata manuals and in a number of statistical books.

2.2 Reading Data Into Stata
In this section we discuss how to read raw data files. If your data come from another
statistical package, such as SAS or SPSS, you will be glad to know that Stata 16 has new
commands import sas and import spss. Older versions could read SAS transport or
export files, using the command fdause (so-named because this is the format required by
the Food and Drug Administration), later renamed to import sasxport. Stata can also
import and export Excel spreadsheets, type help import excel for details, and can read
data from relational databases, type help odbc for an introduction. For more alternatives
consider using a tool such as Stat/Transfer (stattransfer.com).

16

https://stattransfer.com/

2.2.1 Free Format

If your data are in free format, with variables separated by blanks, commas, or tabs, you
can use the infile command.

For an example of a free format file see the family planning effort data available on the
web at https://data.princeton.edu/wws509/datasets (read the description and click on
effort.raw). This is essentially a text file with four columns, one with country names and
three with numeric variables, separated by white space. We can read the data into Stata
using the command

. clear

. infile str14 country setting effort change using ///
> https://data.princeton.edu/wws509/datasets/effort.raw
(20 observations read)

The infile command is followed by the names of the variables. Because the country name
is a string rather than a numeric variable we precede the name with str14, which sets the
type of the variable as a string of up to 14 characters. All other variables are numeric, which
is the default type.

The keyword using is followed by the name of the file, which can be a file on your computer,
a local network, or the internet. In this example we are reading the file directly off the
internet. And that’s all there is to it. For more information on this command type help
infile1. To see what we got we can list a few cases

. list in 1/3

country setting effort change

1. Bolivia 46 0 1
2. Brazil 74 0 10
3. Chile 89 16 29

Spreadsheet packages such as Excel often export data separated by tabs or commas, with one
observation per line. Sometimes the first line has the names of the variables. If your data are
in this format you can read them using the import delimited command. This command
superseeded the insheet command as of Stata 13. Type help import delimited to learn
more.

2.2.2 Fixed Format

Survey data often come in fixed format, with one or more records per case and each variable
in a fixed position in each record.

The simplest way to read fixed-format data is using the infix command to specify the
columns where each variable is located. As it happens, the effort data are neatly lined up in
columns, so we could read them as follows:

. infix str country 4-17 setting 23-24 effort 31-32 change 40-41 using ///
> https://data.princeton.edu/wws509/datasets/effort.raw, clear
(20 observations read)

17

https://data.princeton.edu/wws509/datasets

This says to read the country name from columns 4-17, setting from columns 23-24, and
so on. It is, of course, essential to read the correct columns. We specified that country was
a string variable but didn’t have to specify the width, which was clear from the fact that
the data are in columns 4-17. The clear option is used to overwrite the existing dataset in
memory.

If you have a large number of variables you should consider typing the names and locations
on a separate file, called a dictionary, which you can then call from the infix command.
Try typing the following dictionary into a file called effort.dct:

infix dictionary using https://data.princeton.edu/wws509/datasets/effort.raw {
str country 4-17

setting 23-24
effort 31-32
change 40-41

}

Dictionaries accept only /* */ comments, and these must appear after the first line. After
you save this file you can read the data using the command

infix using effort.dct, clear

Note that you now ‘use’ the dictionary, which in turn ‘uses’ the data file. Instead of specifying
the name of the data file in the dictionary you could specify it as an option to the infix
command, using the form infix using dictionaryfile, using(datafile). The first
‘using’ specifies the dictionary and the second ‘using’ is an option specifying the data file.
This is particularly useful if you want to use one dictionary to read several data files stored
in the same format.

If your observations span multiple records or lines, you can still read them using infix as
long as all observations have the same number of records (not necessarily all of the same
width). For more information see help infix.

The infile command can also be used with fixed-format data and a dictionary. This is a
very powerful command that gives you a number of options not available with infix; for
example it lets you define variable labels right in the dictionary, but the syntax is a bit more
complicated. See help infile2.

In most cases you will find that you can read free-format data using infile and fixed-format
data using infix. For more information on various ways to import data into Stata see help
import.

Data can also be typed directly into Stata using the input command, see help input, or
using the built-in Stata data editor available through Data|Data editor on the menu system.

2.3 Data Documentation
After you read your data into Stata it is important to prepare some documentation. In this
section we will see how to create labels for your dataset, the variables, and their values, and
how to create notes for the dataset and the variables.

18

2.3.1 Data Label and Notes

Stata lets you label your dataset using the label data command followed by a label of up
to 80 characters. You can also add notes of up to ~64K characters each using the notes
command followed by a colon and then the text:

. label data "Family Planning Effort Data"

. notes: Source P.W. Mauldin and B. Berelson (1978). ///
> Conditions of fertility decline in developing countries, 1965-75. ///
> Studies in Family Planning, 9:89-147

Users of the data can type notes to see your annotation. Documenting your data carefully
always pays off.

2.3.2 Variable Labels and Notes

You can (and should) label your variables using the label variable command followed by
the name of the variable and a label of up to 80 characters enclosed in quotes. With the
infile command you can add these labels to the dictionary, which is a natural home for
them. Otherwise you should prepare a do file with all the labels. Here’s how to define labels
for the three variables in our dataset:

. label variable setting "Social Setting"

. label variable effort "Family Planning Effort"

. label variable change "Fertility Change"

Stata also lets you add notes to specific variables using the command notes varname: text.
Note that the command is followed by a variable name and then a colon:

. notes change: Percent decline in the crude birth rate (CBR) ///
> -the number of births per thousand population- between 1965 and 1975.

Type describe and then notes to check our work so far.

2.3.3 Value Labels

You can also label the values of categorical variables. Our dataset doesn’t have any categorical
variables, but let’s create one. We will make a copy of the family planning effort variable and
then group it into three categories, 0-4, 5-14 and 15+, which represent weak, moderate and
strong programs (the generate and recode used in the first two lines are described in the
next section, where we also show how to accomplish all these steps with just one command):

. generate effortg = effort

. recode effortg 0/4=1 5/14=2 15/max=3
(effortg: 20 changes made)
. label define effortg 1 "Weak" 2 "Moderate" 3 "Strong", replace
. label values effortg effortg
. label variable effortg "Family Planning Effort (Grouped)"

Stata has a two-step approach to defining labels. First you define a named label set which
associates integer codes with labels of up to 80 characters, using the label define command.
Then you associate the set of labels with a variable, using the label values command.
Often you use the same name for the label set and the variable, as we did in our example.

19

One advantage of this approach is that you can use the same set of labels for several
variables. The canonical example is label define yesno 1 "yes" 0 "no", which can
then be associated with all 0-1 variables in your dataset, using a command of the form
label values variablename yesno for each one. When defining labels you can omit the
quotes if the label is a single word, but I prefer to use them always for clarity.

Label sets can be modified using the options add or modify, listed using label dir (lists
only names) or label list (lists names and labels), and saved to a do file using label
save. Type help label to learn more about these options and commands. You can also
have labels in different languages as explained below.

2.3.4 Multilingual Labels*

(This sub-section can be skipped without loss of continuity.) A Stata file can store labels
in several languages and you can move freely from one set to another. One limitation of
multi-language support in version 13 and earlier is that labels were restricted to 7-bit ascii
characters, so you couldn’t include letters with diacritical marks such as accents. This
limitation was removed with the introduction of Unicode support in Stata 14, so you can
use diacritical marks and other non-ascii characters, not just in labels but throughout Stata.

I’ll illustrate the idea by creating Spanish labels for our dataset. Following Stata recommen-
dations we will use the ISO standard two-letter language codes, en for English and es for
Spanish.

First we use label language to rename the current language to en, and to create a new
language set es:

. label language en, rename
(language default renamed en)
. label language es, new
(language es now current language)

If you type desc now you will discover that our variables have no labels! We could have
copied the English ones by using the option copy, but that wouldn’t save us any work in
this case. Here are Spanish versions of the data and variable labels:

. label data "Datos de Mauldin y Berelson sobre Planificación Familiar"

. label variable country "País"

. label variable setting "Indice de Desarrollo Social"

. label variable effort "Esfuerzo en Planificación Familiar"

. label variable effortg "Esfuerzo en Planificación Familiar (Agrupado)"

. label variable change "Cambio en la Tasa Bruta de Natalidad (%)"

These definitions do not overwrite the corresponding English labels, but coexist with them
in a parallel Spanish universe. With value labels you have to be a bit more careful, however;
you can’t just redefine the label set called effortg because it is only the association between
a variable and a set of labels, not the labels themselves, that is stored in a language set.
What you need to do is define a new label set; we’ll call it effortg_es, combining the old
name and the new language code, and then associate it with the variable effortg:

. label define effortg_es 1 "Débil" 2 "Moderado" 3 "Fuerte"

20

. label values effortg effortg_es

You may want to try the describe command now. Try tabulating effort (output not shown).
table effortg

Next we change the language back to English and run the table again:
label language en
table effortg

For more information type help label_language.

2.4 Creating New Variables
The most important Stata commands for creating new variables are generate/replace and
recode, and they are often used together.

2.4.1 Generate and Replace

The generate command creates a new variable using an expression that may combine
constants, variables, functions, and arithmetic and logical operators. Let’s start with a
simple example: here is how to create setting squared:

. gen settingsq = setting^2.

If you are going to use this term in a regression you know that linear and quadratic terms
are highly correlated. It may be a good idea to center the variable (by subtracting the
mean) before squaring it. Here we run summarize using quietly to suppress the output
and retrieve the mean from the stored result r(mean):

. quietly summarize setting

. gen settingcsq = (setting - r(mean))^2

Note that I used a different name for this variable. Stata will not let you overwrite an
existing variable using generate. If you really mean to replace the values of the old variable
use replace instead. You can also use drop var_names to drop one or more variables from
the dataset.

2.4.2 Operators and Expressions

The following table shows the standard arithmetic, logical and relational operators you may
use in expressions:

Arithmetic Logical Relational
+ add ! not (also ~) == equal
- subtract | or != not equal (also ~=)
∗ multiply & and < less than
/ divide <= less than or equal
ˆ raise to power > greater than
+ string concatenation >= greater than or equal

21

Here’s how to create an indicator variable for countries with high-effort programs:
generate hieffort1 = effort > 14

This is a common Stata idiom, taking advantage of the fact that logical expressions take the
value 1 if true and 0 if false. A common alternative is to write

generate hieffort2 = 0
replace hieffort2 = 1 if effort > 14

The two strategies yield exactly the same answer. Both will be wrong if there are missing
values, which will be coded as high effort because missing value codes are very large values,
as noted in Section 2.1 above. You should develop a good habit of avoiding open ended
comparisons. My preferred approach is to use

generate hieffort = effort > 14 if !missing(effort)

which gives true for effort above 14, false for effort less than or equal to 14, and missing
when effort is missing. Logical expressions may be combined using & for “and” or | for “or”.
Here’s how to create an indicator variable for effort between 5 and 14:

gen effort5to14 = (effort >=5 & effort <= 14)

Here we don’t need to worry about missing values, they are excluded by the clause effort
<= 14.

2.4.3 Functions

Stata has a large number of functions, here are a few frequently-used mathematical functions,
type help mathfun to see a complete list:

abs(x) the absolute value of x
exp(x) the exponential function of x
int(x) the integer obtained by truncating x towards zero
ln(x) or log(x) the natural logarithm of x if x>0
log10(x) the log base 10 of x (for x>0)
logit(x) the log of the odds for probability x: logit(x) = ln(x/(1-x))
max(x1,x2,. . . ,xn) the maximum of x1, x2, . . . , xn, ignoring missing values
min(x1,x2,. . . ,xn) the minimum of x1, x2, . . . , xn, ignoring missing values
round(x) x rounded to the nearest whole number
sqrt(x) the square root of x if x >= 0

These functions are automatically applied to all observations when the argument is a variable
in your dataset.

Stata also has a function to generate random numbers (useful in simulation), namely
uniform(). It also has an extensive set of functions to compute probability distributions
(needed for p-values) and their inverses (needed for critical values), including normal() for
the normal cdf and invnormal() for its inverse, see help density functions for more
information. To simulate normally distributed observations you can use

22

rnormal() // or invnormal(uniform())

There are also some specialized functions for working with strings, see help string
functions, and with dates, see help date functions.

2.4.4 Recoding Variables

The recode command is used to group a numeric variable into categories. Suppose for
example a fertility survey has age in single years for women aged 15 to 49, and you would
like to code it into 5-year age groups. You could, of course, use something like

gen age5 = int((age-15)/5)+1 if !missing(age)

but this only works for regularly spaced intervals (and is a bit cryptic). The same result can
be obtained using

recode age (15/19=1) (20/24=2) (25/29=3) (30/34=4) ///
(35/39=5) (40/44=6) (45/49=7), gen(age5)

Each expression in parenthesis is a recoding rule, and consist of a list or range of values,
followed by an equal sign and a new value. A range, specified using a slash, includes the two
boundaries, so 15/19 is 15 to 19, which could also be specified as 15 16 17 18 19 or even
15 16 17/19. You can use min to refer to the smallest value and max to refer to the largest
value, as in min/19 and 44/max. The parentheses can be omitted when the rule has the
form range=value, but they usually help make the command more readable.

Values are assigned to the first category where they fall. Values that are never assigned
to a category are kept as they are. You can use else (or *) as the last clause to refer to
any value not yet assigned. Alternatively, you can use missing and nonmissing to refer to
unassigned missing and nonmissing values; these must be the last two clauses and cannot be
combined with else.

In our example we also used the gen() option to generate a new variable, in this case age5;
the default is to replace the values of the existing variable. I strongly recommend that you
always use the gen option or make a copy of the original variable before recoding it.

You can also specify value labels in each recoding rule. This is simpler and less error prone
that creating the labels in a separate statement. The option label(label_name) lets you
assign a name to the labels created (the default is the same as the variable name). Here’s
an example showing how to recode and label family planning effort in one step (compare
with the four commands used in Section 2.4.2 above).

recode effort (0/4=1 Weak) (5/14=2 Moderate) (15/max=3 Strong) ///
, generate(efffortg) label(effortg)

It is often a good idea to cross-tabulate original and recoded variables to check that the
transformation has worked as intended. (Of course this can only be done if you have
generated a new variable!)

23

2.5 Managing Stata Files
Once you have created a Stata system file you will want to save it on disk using save
filename, replace, where the replace option, as usual, is needed only if the file already
exists. To load a Stata file you have saved in a previous session you issue the command use
filename.

If there are temporary variables you do not need in the saved file you can drop them (before
saving) using drop varnames. Alternatively, you may specify the variables you want to
keep, using keep varnames. With large files you may want to compress them before saving;
this command looks at the data and stores each variable in the smallest possible data type
that will not result in loss of precision.

It is possible to add variables or observations to a Stata file. To add variables you use the
merge commmand, which requires two (or more) Stata files, usually with a common id so
observations can be paired correctly. A typical application is to add household information
to an individual data file. Type help merge to learn more.

To add observations to a file you use the append command, which requires the data to
be appended to be on a Stata file, usually containing the same variables as the dataset in
memory. You may, for example, have data for patients in one clinic and may want to append
similar data from another clinic. Type help append to learn more.

A related but more specialized command is joinby, which forms all pairwise combinations
of observations in memory with observations in an external dataset (see also cross).

2.6 Data Frames
Stata 16 introduced frames, which allow it to keep more than one dataset in memory at
the same time. Consider a situation where you have household and individual data on
separate files, both with a common household id, and need to combine them. In previous
versions of Stata you would have needed to merge the files. With Stata 16 you can store
both datasets as frames, and link the household data to each individual. There are many
more applications, type help frames to learn more.

3 Stata Graphics
Stata has excellent graphic facilities, accessible through the graph command, see help
graph for an overview. The most common graphs in statistics are X-Y plots showing points
or lines. These are available in Stata through the twoway subcommand, which in turn has
many sub-subcommands or plot types, the most important of which are scatter and line.
I will also describe briefly bar plots, available through the bar subcommand, and other plot
types.

Stata 10 introduced a graphics editor that can be used to modify a graph interactively. I do
not recomment this practice, however, because it conflicts with the goals of documenting
and ensuring reproducibility of all the steps in your research.

24

All the graphs in this section (except where noted) use a custom scheme with blue titles
and a white background, but otherwise should look the same as your own graphs. I discuss
schemes in Section 3.2.5.

3.1 Scatterplots
In this section I will illustrate a few plots using the data on fertility decline first used in
Section 2.1. To read the data from net-aware Stata type

. infile str14 country setting effort change ///
> using https://data.princeton.edu/wws509/datasets/effort.raw, clear
(20 observations read)

To whet your appetite, here’s the plot that we will produce in this section:

3.1.1 A Simple Scatterplot

To produce a simple scatterplot of fertility change by social setting you use the command
graph twoway scatter change setting

Note that you specify y first, then x. Stata labels the axes using the variable labels, if
they are defined, or variable names if not. The command may be abbreviated to twoway
scatter, or just scatter if that is the only plot on the graph. We will now add a few bells
and whistles.

3.1.2 Fitted Lines

Suppose we want to show the fitted regression line as well. In some packages you would
need to run a regression, compute the fitted line, and then plot it. Stata can do all that in
one step using the lfit plot type. (There is also a qfit plot for quadratic fits.) This can

25

be combined with the scatter plot by enclosing each sub-plot in parenthesis. (One can also
combine plots using two horizontal bars || to separate them.)

graph twoway (scatter setting effort) ///
(lfit setting effort)

Now suppose we wanted to put confidence bands around the regression line. Stata can do
this with the lfitci plot type, which draws the confidence region as a gray band. (There
is also a qfitci band for quadratic fits.) Because the confidence band can obscure some
points we draw the region first and the points later

graph twoway (lfitci setting effort) ///
(scatter setting effort)

Note that this command doesn’t label the y-axis but uses a legend instead. You could
specify a label for the y-axis using the ytitle() option, and omit the (rather obvious)
legend using legend(off). Here we specify both as options to the twoway command. To
make the options more obvious to the reader, I put the comma at the start of a new line:

graph twoway (lfitci setting effort) ///
(scatter setting effort) ///

, ytitle("Fertility Decline") legend(off)

3.1.3 Labeling Points

There are many options that allow you to control the markers used for the points, including
their shape and color, see help marker_options. It is also possible to label the points with
the values of a variable, using the mlabel(varname) option. In the next step we add the
country names to the plot:

graph twoway (lfitci change setting) ///
(scatter change setting, mlabel(country))

One slight problem with the labels is the overlap of Costa Rica and Trinidad Tobago (and
to a lesser extent Panama and Nicaragua). We can solve this problem by specifying the
position of the label relative to the marker using a 12-hour clock (so 12 is above, 3 is to
the right, 6 is below and 9 is to the left of the marker) and the mlabv() option. We create
a variable to hold the position set by default to 3 o’clock and then move Costa Rica to
9 o’clock and Trinidad Tobago to just a bit above that at 11 o’clock (we can also move
Nicaragua and Panama up a bit, say to 2 o’clock):

. gen pos=3

. replace pos = 11 if country == "TrinidadTobago"
(1 real change made)
. replace pos = 9 if country == "CostaRica"
(1 real change made)
. replace pos = 2 if country == "Panama" | country == "Nicaragua"
(2 real changes made)

The command to generate this version of the graph is as follows
graph twoway (lfitci change setting) ///

(scatter change setting, mlabel(country) mlabv(pos))

26

3.1.4 Titles, Legends and Captions

There are options that apply to all two-way graphs, including titles, labels, and legends.
Stata graphs can have a title() and subtitle(), usually at the top, and a legend(),
note() and caption(), usually at the bottom, type help title_options to learn more.
Usually a title is all you need. Stata 11 allows text in graphs to include bold, italics, greek
letters, mathematical symbols, and a choice of fonts. Stata 14 introduced Unicode, greatly
expanding what can be done. Type help graph text to learn more.

Our final tweak to the graph will be to add a legend to specify the linear fit and 95%
confidence interval, but not fertility decline itself. We do this using the order(2 "linear
fit" 1 "95% CI") option of the legend to label the second and first items in that order.
We also use ring(0) to move the legend inside the plotting area, and pos(5) to place the
legend box near the 5 o’clock position. Our complete command is then

. graph twoway (lfitci change setting) ///
> (scatter change setting, mlabel(country) mlabv(pos)) ///
> , title("Fertility Decline by Social Setting") ///
> ytitle("Fertility Decline") ///
> legend(ring(0) pos(5) order(2 "linear fit" 1 "95% CI"))
. graph export fig31.png, width(500) replace
(file fig31.png written in PNG format)

The result is the graph shown at the beginning of this section.

3.1.5 Axis Scales and Labels

There are options that control the scaling and range of the axes, including xscale() and
yscale(), which can be arithmetic, log, or reversed, type help axis_scale_options to
learn more. Other options control the placing and labeling of major and minor ticks and
labels, such as as xlabel(), xtick() and xmtick(), and similarly for the y-axis, see help
axis_label_options. Usually the defaults are acceptable, but it’s nice to know that you
can change them.

3.2 Line Plots
I will illustrate line plots using data on U.S. life expectancy, available as one of the datasets
shipped with Stata. (Try sysuse dir to see what else is available.)

. sysuse uslifeexp, clear
(U.S. life expectancy, 1900-1999)

The idea is to plot life expectancy for white and black males over the 20th century. Again,
to whet your appetite I’ll start by showing you the final product, and then we will build the
graph bit by bit.

27

3.2.1 A Simple Line Plot

The simplest plot uses all the defaults:
graph twoway line le_wmale le_bmale year

If you are puzzled by the dip before 1920, Google “US life expectancy 1918”. We could
abbreviate the command to twoway line, or even line if that’s all we are plotting. (This
shortcut only works for scatter and line.)

The line plot allows you to specify more than one “y” variable, the order is y1, y2, . . . ,
ym, x. In our example we specified two, corresponding to white and black life expectancy.
Alternatively, we could have used two line plots: (line le_wmale year) (line le_bmale
year).

3.2.2 Titles and Legends

The default graph is quite good, but the legend seems too wordy. We will move most of the
information to the title and keep only ethnicity in the legend:

graph twoway line le_wmale le_bmale year ///
, title("U.S. Life Expectancy") subtitle("Males") ///

legend(order(1 "white" 2 "black"))

Here I used three options, which as usual in Stata go after a comma: title, subtitle and

28

legend. The legend option has many sub options; I used order to list the keys and their
labels, saying that the first line represented whites and the second blacks. To omit a key
you just leave it out of the list. To add text without a matching key use a hyphen (or minus
sign) for the key. There are many other legend options, see help legend_option to learn
more.

I would like to use space a bit better by moving the legend inside the plot area, say around
the 5 o’clock position, where improving life expectancy has left some spare room. As noted
earlier we can move the legend inside the plotting area by using ring(0), the “inner circle”,
and place it near the 5 o’clock position using pos(5). Because these are legend sub-options
they have to go inside legend():

graph twoway line le_wmale le_bmale year ///
, title("U.S. Life Expectancy") subtitle("Males") ///

legend(order(1 "white" 2 "black") ring(0) pos(5))

3.2.3 Line Styles

I don’t know about you, but I find hard to distinguish the default lines on the plot. Stata
lets you control the line style in different ways. The clstyle() option lets you use a named
style, such as foreground, grid, yxline, or p1-p15 for the styles used by lines 1 to 15, see
help linestyle. This is useful if you want to pick your style elements from a scheme, as
noted further below.

Alternatively, you can specify the three components of a style: the line pattern, width and
color:

• Patterns are specified using the clpattern() option. The most common patterns are
solid, dash, and dot; see help linepatternstyle for more information.

• Line width is specified using clwidth(); the available options include thin, medium
and thick, see help linewidthstyle for more.

• Colors can be specified using the clcolor() option using color names (such as
red, white and blue, teal, sienna, and many others) or RGB values, see help
colorstyle.

Here’s how to specify blue for whites and red for blacks:
graph twoway (line le_wmale le_bmale year , clcolor(blue red)) ///

, title("U.S. Life Expectancy") subtitle("Males") ///
legend(order(1 "white" 2 "black") ring(0) pos(5))

Note that clcolor() is an option of the line plot, so I put parentheses round the line
command and inserted it there.

3.2.4 Scale Options

It looks as if improvements in life expectancy slowed down a bit in the second half of the
century. This can be better appreciated using a log scale, where a straight line would
indicate a constant percent improvement. This is easily done using the axis options of the

29

two-way command, see help axis_options, and in particular yscale(), which lets you
choose arithmetic, log, or reversed scales. There’s also a suboption range() to control
the plotting range. Here I will specify the y-range as 25 to 80 to move the curves a bit up:

. graph twoway (line le_wmale le_bmale year , clcolor(blue red)) ///
> , title("U.S. Life Expectancy") subtitle("Males") ///
> legend(order(1 "white" 2 "black") ring(0) pos(5)) ///
> yscale(log range(25 80))

3.2.5 Graph Schemes

Stata uses schemes to control the appearance of graphs, see help scheme. You can set the
default scheme to be used in all graphs with set scheme_name. You can also redisplay the
(last) graph using a different scheme with graph display, scheme(scheme_name).

To see a list of available schemes type graph query, schemes. Try s2color for screen
graphs, s1manual for the style used in the Stata manuals, and economist for the style used
in The Economist. Using the latter we obtain the graph shown at the start of this section.

. graph display, scheme(economist)

. graph export fig32.png, width(400) replace
(file fig32.png written in PNG format)

3.3 Other Graphs
I conclude the graphics section discussing bar graphs, box plots, and kernel density plots
using area graphs with transparency.

3.3.1 Bar Graphs

Bar graphs may be used to plot the frequency distribution of a categorical variable, or to
plot descriptive statistics of a continuous variable within groups defined by a categorical
variables. For our examples we will use the city temperature data that ships with Stata.

If I was to just type graph bar, over(region) I would obtain the frequency distribution of
the region variable. Let us show instead the average temperatures in January and July. To
do this I could specify (mean) tempjan (mean) tempjuly, but because the default statistic
is the mean I can use the shorter version below. I think the default legend is too long, so I
also specified a custom one.

I use over() so the regions are overlaid in the same graph; using by() instead, would result
in a graph with a separate panel for each region. The bargap() option controls the gap
between bars for different statistics in the same over group; here I put a small space. The
gap() option, not used here, controls the space between bars for different over groups. I
also set the intensity of the color fill to 70%, which I think looks nicer.

. sysuse citytemp, clear
(City Temperature Data)
. graph bar tempjan tempjul, over(region) bargap(10) intensity(70) ///
> title(Mean Temperature) legend(order(1 "January" 2 "July"))
. graph export bar.png, width(500) replace
(file bar.png written in PNG format)

30

Obviously the north-east and north-central regions are much colder in January than the
south and west. There is less variation in July, but temperatures are higher in the south.

3.3.2 Box Plots

A quick summary of the distribution of a variable may be obtained using a “box-and-wiskers”
plot, which draws a box ranging from the first to the third quartile, with a line at the median,
and adds “wiskers” going out from the box to the adjacent values, defined as the highest and
lowest values that are no farther from the median than 1.5 times the inter-quartile range.
Values further out are outliers, indicated by circles.

Let us draw a box plot of January temperatures by region. I will use the over(region)
option, so the boxes will be overlaid in the same graph, rather than by(region), which
would produce a separate panel for each region. The option sort(1) arranges the boxes in
order of the median of tempjan, the first (and in this case only) variable. I also set the box
color to a nice blue by specifying the Red, Blue and Green (RGB) color components in a
scale of 0 to 255:

. graph box tempjan, over(region, sort(1)) box(1, color("51 102 204")) ///
> title(Box Plots of January Temperature by Region)
. graph export boxplot.png, width(500) replace
(file boxplot.png written in PNG format)

31

We see that January temperatures are lower and less variable in the north-east and north-
central regions, with quite a few cities with unusually cold averages.

3.3.3 Kernel Density Estimates

A more detailed view of the distribution of a variable may be obtained using a smooth
histogram, calculated using a kernel density smoother using the kdensity command.

Let us run separate kernel density estimates for January temperatures in each region using
all the defaults, and save the results.

. forvalues i=1/4 {
2. capture drop x`i´ d`i´
3. kdensity tempjan if region== `i´, generate(x`i´ d`i´)
4. }

. gen zero = 0

Next we plot the density estimates using area plots with a floor at zero. Because the densities
overlap, I use the new opacity option introduced in Stata 15 to make them 50% transparent.
In this case I used color names, followed by a % symbol and the opacity. I also simplify the
legend a bit, match the order of the densities, and put it in the top right corner of the plot.

. twoway rarea d1 zero x1, color("blue%50") ///
> || rarea d2 zero x2, color("purple%50") ///
> || rarea d3 zero x3, color("orange%50") ///
> || rarea d4 zero x4, color("red%50") ///
> title(January Temperatures by Region) ///
> ytitle("Smoothed density") ///
> legend(ring(0) pos(2) col(1) order(2 "NC" 1 "NE" 3 "S" 4 "W"))
. graph export kernel.png, width(500) replace
(file kernel.png written in PNG format)

32

The plot gives us a clear picture of regional differences in January temperatures, with colder
and narrower distributions in the north-east and north-central regions, and warmer with
quite a bit of overlap in the south and west.

3.4 Managing Graphs
Stata keeps track of the last graph you have drawn, which is stored in memory, and calls
it “Graph”. You can actually keep more than one graph in memory if you use the name()
option to name the graph when you create it. This is useful for combining graphs, type
help graph combine to learn more. Note that graphs kept in memory disappear when you
exit Stata, even if you save the data, unless you save the graph itself.

To save the current graph on disk using Stata’s own format, type graph save filename.
This command has two options, replace, which you need to use if the file already exists,
and asis, which freezes the graph (including its current style) and then saves it. The default
is to save the graph in a live format that can be edited in future sessions, for example
by changing the scheme. After saving a graph in Stata format you can load it from the
disk with the command graph use filename. (Note that graph save and graph use are
analogous to save and use for Stata files.) Any graph stored in memory can be displayed
using graph display [name]. (You can also list, describe, rename, copy, or drop graphs
stored in memory, type help graph_manipulation to learn more.)

If you plan to incorporate the graph in another document you will probably need to save it
in a more portable format. Stata’s command graph export filename can export the graph
using a wide variety of vector or raster formats, usually specified by the file extension. Vector
formats such as Windows metafile (wmf or emf) or Adobe’s PostScript and its variants (ps,
eps, pdf) contain essentially drawing instructions and are thus resolution independent, so
they are best for inclusion in other documents where they may be resized. Raster formats

33

such as Portable Network Graphics (png) save the image pixel by pixel using the current
display resolution, and are best for inclusion in web pages. Stata 15 added Scalable Vector
Graphics (SVG), a vector image format that is supported by all major modern web browsers.

You can also print a graph using graph print, or copy and paste it into a document using
the Windows clipboard; to do this right click on the window containing the graph and then
select copy from the context menu.

4 Programming Stata
This section is a gentle introduction to programming Stata. I discuss macros and loops,
and show how to write your own (simple) programs. This is a large subject and all I can
hope to do here is provide a few tips that hopefully will spark your interest in further study.
However, the material covered will help you use Stata more effectively.

Stata 9 introduced a new and extremely powerful matrix programming language called Mata,
and Stata 16 expanded the choice of languages by integrating Python. In addition, it is
possible to write Stata plugins in C or Java. All of these languages are beyond the scope
of this introductory tutorial. Your efforts here will not be wasted, however, because the
options are complementary to, not a complete substitute for, classic Stata programming.

To learn more about programming Stata I recommend Kit Baum’s An Introduction to Stata
Programming, now in its second edition, and William Gould’s The Mata Book. You may also
find useful Chapter 18 in the User’s Guide, referring to the Programming volume and/or
the online help as needed. Nick Cox’s regular columns in the Stata Journal are a wonderful
resource for learning about Stata. Other resources were listed in Section 1 of this tutorial.

4.1 Macros
A macro is simply a name associated with some text. Macros can be local or global in scope.

4.1.1 Storing Text in Local Macros

Local macros have names of up to 31 characters and are known only in the current context
(the console, a do file, or a program).

You define a local macro using local name [=] text and you evaluate it using `name'.
(Note the use of a backtick or left quote.)

The first variant, without an equal sign, is used to store arbitrary text of up to ~64k
characters (up to a million in Stata SE). The text is often enclosed in quotes, but it doesn’t
have to be.

Example: Control Variables in Regression. You need to run a bunch of regression equa-
tions that include a standard set of control variables, say age, agesq, education, and
income. You could, of course, type these names in each equation, or you could cut and paste
the names, but these alternatives are tedious and error prone. The smart way is to define a
macro

34

local controls age agesq education income

You then type commands such as
regress outcome treatment `controls'

which in this case is exactly equivalent to typing regress outcome treatment age agesq
education income.

If there’s only one regression to run you haven’t saved anything, but if you have to run
several models with different outcomes or treatments, the macro saves work and ensures
consistency.

This approach also has the advantage that if later you realize that you should have used
log-income rather than income as a control, all you need to do is change the macro definition
at the top of your do file, say to read logincome instead of income and all subsequent
models will be run with income properly logged (assuming these variables exist).

Warning: Evaluating a macro that doesn’t exist is not an error; it just returns an empty string.
So be careful to spell macro names correctly. If you type regress outcome treatment
`contrls', Stata will read regress outcome treatment, because the macro contrls does
not exist. The same would happen if you type `control' because macro names cannot be
abbreviated the way variable names can. Either way, the regression will run without any
controls. But you always check your output, right?

Example: Managing Dummy Variables Suppose you are working with a demographic
survey where age has been grouped in five-year groups and ends up being represented by
seven dummies, say age15to19 to age45to49, six of which will be used in your regressions.
Define a macro

local age "age20to24 age25to29 age30to34 age35to39 age40to44 age45to49"

and then in your regression models use something like
regress ceb `age' urban

which is not only shorter and more readable, but also closer to what you intend, which is to
regress ceb on “age”, which happens to be a bunch of dummies. This also makes it easier
to change the representation of age; if you later decide to use linear and quadratic terms
instead of the six dummies all you do is define local age "age agesq" and rerun your
models. Note that the first occurrence of age here is the name of the macro and the second
is the name of a variable. I used quotes to make the code clearer. Stata never gets confused.

Note on nested macros. If a macro includes macro evaluations, these are resolved at the time
the macro is created, not when it is evaluated. For example if you define local controls
`age' income education. Stata sees that it includes the macro age and substitutes the
current value of age. Changing the contents of the macro age at a later time does not
change the contents of the macro controls.

There is, however, a way to achieve that particular effect. The trick is to escape the macro
evaluation character when you define the macro, typing local controls \`age' income

35

education. Now Stata does not evaluate the macro (but eats the escape character),so the
contents of controls becomes `age' income education. When the controls macro is
evaluated, Stata sees that it includes the macro age and substitutes its current contents.

In one case substitution occurs when the macro is defined, in the other when it is evaluated.

4.1.2 Storing Results in Local Macros

The second type of macro definition, local name = text with an equal sign, is used to
store results. It instructs Stata to treat the text on the right hand side as an expression,
evaluate it, and store a text representation of the result under the given name.

Suppose you just run a regression and want to store the resulting R-squared, for comparison
with a later regression. You know that regress stores R-squared in e(r2), so you think
local rsq e(r2) would do the trick.

But it doesn’t. Your macro stored the formula e(r2), as you can see by typing display
"`rsq'". What you needed to store was the value. The solution is to type local rsq =
e(r2), with an equal sign. This causes Stata to evaluate the expression and store the result.

To see the difference try this
. sysuse auto, clear
(1978 Automobile Data)
. quietly regress mpg weight
. local rsqf e(r2)
. local rsqv = e(r2)
. di `rsqf´ // this has the current R-squared
.65153125
. di `rsqv´ // as does this
.65153125
. quietly regress mpg weight foreign
. di `rsqf´ // the formula has the new R-squared
.66270291
. di `rsqv´ // this guy has the old one
.65153125

Another way to force evaluation is to enclose e(r2) in single quotes when you define the macro.
This is called a macro expression, and is also useful when you want to display results. It
allows us to type display "R-squared=`rsqv'" instead of display "R-squared=" `rsq'.
(What do you think would happen if you type display "``rsqf''"?)

An alternative way to store results for later use is to use scalars (type help scalars to
learn more.) This has the advantage that Stata stores the result in binary form without
loss of precision. A macro stores a text representation that is good only for about 8 digits.
The downside is that scalars are in the global namespace, so there is a potential for name
conflicts, particular in programs (unless you use temporary names, which we discuss later).

You can use an equal sign when you are storing text, but this is not necessary, and is not
a good idea if you are using an old version of Stata. The difference is subtle. Suppose
we had defined the controls macro by saying local controls = "age agesq education
income". This would have worked fine, but the quotes cause the right-hand-side to be

36

evaluated, in this case as a string, and strings used to be limited to 244 characters (or 80 in
Stata/IC before 9.1), whereas macro text can be much longer. Type help limits to be
reminded of the limits in your version.

4.1.3 Keyboard Mapping with Global Macros

Global macros have names of up to 32 characters and, as the name indicates, have global
scope.

You define a global macro using global name [=] text and evaluate it using $name. (You
may need to use ${name} to clarify where the name ends.)

I suggest you avoid global macros because of the potential for name conflicts. A useful
application, however, is to map the function keys on your keyboard. If you work on a shared
network folder with a long name try something like this

global F5 \\server\shared\research\project\subproject\

Then when you hit F5 Stata will substitute the full name. And your do files can use
commands like do ${F5}dofile. (We need the braces to indicate that the macro is called
F5, not F5dofile.)

Obviously you don’t want to type this macro each time you use Stata. Solution? Enter it in
your profile.do file, a set of commands that is executed each time you run Stata. Your
profile is best stored in Stata’s start-up directory, usually C:\data. Type help profilew
to learn more.

4.1.4 More on Macros

Macros can also be used to obtain and store information about the system or the variables
in your dataset using extended macro functions. For example you can retrieve variable and
value labels, a feature that can come handy in programming.

There are also commands to manage your collection of macros, including macro list and
macro drop. Type help macro to learn more.

4.2 Looping
Loops are used to do repetitive tasks. Stata has commands that allow looping over sequences
of numbers and various types of lists, including lists of variables.

Before we start, however, don’t forget that Stata does a lot of looping all by itself. If you
want to compute the log of income, you can do that in Stata with a single line:

gen logincome = log(income)

This loops implicitly over all observations, computing the log of each income, in what is
sometimes called a vectorized operation. You could code the loop yourself, but you shouldn’t
because (i) you don’t need to, and (ii) your code will be a lot slower that Stata’s built-in
loop.

37

4.2.1 Looping Over Sequences of Numbers

The basic looping command takes the form
forvalues number = sequence {

... body of loop using `number' ...
}

Here forvalues is a keyword, number is the name of a local macro that will be set to each
number in the sequence, and sequence is a range of values which can have the form

• min/max to indicate a sequence of numbers from min to max in steps of one, for example
1/3 yields 1, 2 and 3, or

• first(step)last which yields a sequence from first to last in steps of size step.
For example 15(5)50 yields 15,20,25,30,35,40,45 and 50.

(There are two other ways of specifying the second type of sequence, but I find the one listed
here the clearest, see help forvalues for the alternatives.)

The opening left brace must be the last thing on the first line (other than comments), and
the loop must be closed by a matching right brace on a line all by itself. The loop is executed
once for each value in the sequence with your local macro number (or whatever you called
it) holding the value.

Creating Dummy Variables Here’s my favorite way of creating dummy variables to repre-
sent age groups. Stata 11 introduced factor variables and Stata 13 improved the labeling of
tables of estimates, drastically reducing the need to “roll your own” dummies, but the code
remains instructive.

forvalues bot = 20(5)45 {
local top = `bot' + 4
gen age`bot'to`top' = age >= `bot' & age <= `top'

}

This will create dummy variables age20to24 to age45to49. The way the loop works is that
the local macro bot will take values between 20 and 45 in steps of 5 (hence 20, 25, 30, 35,
40, and 45), the lower bounds of the age groups.

Inside the loop we create a local macro top to represent the upper bounds of the age groups,
which equals the lower bound plus 4. The first time through the loop bot is 20, so top is 24.
We use an equal sign to store the result of adding 4 to bot.

The next line is a simple generate statement. The first time through the loop the line
will say gen age20to24 = age >= 20 & age <= 24, as you can see by doing the macro
substitution yourself. This will create the first dummy, and Stata will then go back to the
top to create the next one.

4.2.2 Looping Over Elements in a List

The second looping command is foreach and comes in six flavors, dealing with different
types of lists. I will start with the generic list:

38

foreach item in a-list-of-things {
... body of loop using `item' ...

}

Here foreach is a keyword, item is a local macro name of your own choosing, in is another
keyword, and what comes after is a list of blank-separated words. Try this example

foreach animal in cats and dogs {
display "`animal'"

}

This loop will print “cats”, “and”, and “dogs”, as the local macro animal is set to each
of the words in the list. Stata doesn’t know “and” is not an animal, but even if it did, it
wouldn’t care because the list is generic.

If you wanted to loop over an irregular sequence of numbers –for example you needed to
do something with the Coale-Demeny regional model life tables for levels 2, 6 and 12– you
could write

foreach level in 2 6 12 {
... do something with `level' ...

}

That’s it. This is probably all you need to know about looping.

4.2.3 Looping Over Specialized Lists

Stata has five other variants of foreach which loop over specific types of lists, which I now
describe briefly.

Lists of Variables Perhaps the most useful variant is
foreach varname of varlist list-of-variables {

... body of loop using `varname' ...
}

Here foreach, of and varlist are keywords, and must be typed exactly as they are. The
list-of-variables is just that, a list of existing variable names typed using standard
Stata conventions, so you can abbreviate names (at your own peril), use var* to refer to all
variables that start with “var”, or type var1-var3 to refer to variables var1 to var3.

The advantages of this loop over the generic equivalent foreach varname in
list-of-variables is that Stata checks that each name in the list is indeed an
existing variable name, and lets you abbreviate or expand the names.

If you need to loop over new as opposed to existing variables use foreach varname of
newlist list-of-new-variables. The newlist keyword replaces varlist and tells Stata
to check that all the list elements are legal names of variables that don’t exist already.

Words in Macros Two other variants loop over the words in a local or global macro; they
use the keyword global or local followed by a macro name (in lieu of a list). For example

39

here’s a way to list the control variables from the section on local macros:
foreach control of local controls {

display "`control'"
}

Presumably you would do something more interesting than just list the variable names.
Because we are looping over variables in the dataset we could have achieved the same purpose
using foreach with a varlist; here we save the checking.

Lists of Numbers Stata also has a foreach variant that specializes in lists of numbers (or
numlists in Stataspeak) that can’t be handled with forvalues.

Suppose a survey had a baseline in 1980 and follow ups in 1985 and 1995. (They actually
planned a survey in 1990 but it was not funded.) To loop over these you could use

foreach year of numlist 1980 1985 1995 {
display "`year'"

}

Of course you would do something more interesting than just print the years. The numlist
could be specified as 1 2 3, or 1/5 (meaning 1 2 3 4 5), or 1(2)7 (count from 1 to 7 in
steps of 2 to get 1 3 5 7); type help numlist for more examples.

The advantage of this command over the generic foreach is that Stata will check that each
of the elements of the list of numbers is indeed a number.

4.2.4 Looping for a While

In common with many programming languages, Stata also has a while loop, which has the
following structure

while condition {
... do something ...

}

where condition is an expression. The loop executes as long as the condition is true (nonzero).
Usually something happens inside the loop to make the condition false, otherwise the code
would run forever.

A typical use of while is in iterative estimation procedures, where you may loop while the
difference in successive estimates exceeds a predefined tolerance. Usually an iteration count
is used to detect lack of convergence.

The continue [,break] command allows breaking out of any loop, including while,
forvalues and foreach. The command stops the current iteration and continues with the
next, unless break is specified in which case it exits the loop.

4.2.5 Conditional Execution

Stata also has an if programming command, not to be confused with the ifqualifier that
can be used to restrict any command to a subset of the data, as in summarize mpg if

40

foreign. The ifcommand has the following structure
if expression {

... commands to be executed if expression is true ...
}
else {

... optional block to be executed if expression is false ...
}

Here if and the optional else are keywords, type help exp for an explanation of expressions.
The opening brace { must be the last thing on a line (other than comments) and the closing
brace } must be on a new line by itself.

If the if or else parts consist of a single command they can go on the same line without
braces, as in if expression command. But if expression { command } is not legal. You
could use the braces by spreading the code into three lines and this often improves readability
of the code.

So here we have a silly loop where we break out after five of the possible ten iterations:
forvalues iter=1/10 {

display "`iter'"
if `iter' >= 5 continue, break

}

And with that, we break out of looping.

4.3 Writing Commands
We now turn to the fun task of writing your own Stata commands. Follow along as we
develop a couple of simple programs, one to sign your output, and another to evaluate the
Coale-McNeil model nuptiality schedule, so we can create a plot like the figure below.

41

4.3.1 Programs With No Arguments

Let us develop a command that helps label your output with your name. (Usually you would
want a timestamp, but that is already available at the top of your log file. You always log
your output, right?) The easiest way to develop a command is to start with a do file. Fire
up Stata’s do-file editor (Ctrl-9) and type:

capture program drop sign
program define sign

version 9.1
display as text "Germán Rodríguez "
display "{txt}{hline 62}"

end

That’s it. If you now type sign Stata will display the signature using the text style (usually
black on your screen).

The program drop statement is needed in case we make changes and need to rerun the do
file, because you can’t define an existing program. The capture is needed the very first
time, when there is nothing to drop.

The version statement says this command was developed for version 9.1 of Stata, and helps
future versions of Stata run it correctly even if the syntax has changed in the interim.

The last line uses a bit of SMCL, pronounced “smickle” and short for Stata Markup Control
Language, which is the name of Stata’s output processor. SMCL uses plain text combined
with commands enclosed in braces. For example {txt} sets display mode to text, and
{hline 62} draws a horizontal rule exactly 62 characters wide. To learn more about SMCL
type help smcl.

42

4.3.2 A Program with an Argument

To make useful programs you will often need to pass information to them, in the form of
“arguments” you type after the command. Let’s write a command that echoes what you say

capture program drop echo
program define echo

version 9.1
display as text "`0'"

end

Try typing echo Programming Stata Tutorial to see what happens.

When you call a command Stata stores the arguments in a local macro called 0. We use a
display command with `0' to evaluate the macro. The result is text, so we enclose it in
quotes. (Suppose you typed echo Hi, so the local macro 0 has Hi; the command would read
display Hi and Stata will complain, saying ‘Hi not found’. We want the command to read
display "Hi", which is why we code display "`0'".)

If we don’t specify anything, the local macro 0 will be an empty string, the command will
read display "" and Stata will print a blank line.

4.3.3 Compound Quotes

Before we go out to celebrate we need to fix a small problem with our new command. Try
typing echo The hopefully “final” run. Stata will complain. Why? Because after macro
substitution the all-important display command will read

display "The hopefully "final" run"

The problem is that the quote before final closes the initial quote, so Stata sees this is as
"The hopefully " followed by final" run", which looks to Stata like an invalid name.
Obviously we need some way to distinguish the inner and outer quotes.

Incidentally you could see exactly where things went south by typing set trace on and
running the command. You can see in (often painful) detail all the steps Stata goes through,
including all macro substitutions. Don’t forget to type set trace off when you are done.
Type help trace to learn more.

The solution to our problem? Stata’s compound double quotes: `" to open and "' to close,
as in `"compound quotes"'. Because the opening and closing symbols are different, these
quotes can be nested. Compound quotes

• can be used anywhere a double quote is used.
• must be used if the text being quoted includes double quotes.

So our program must display `"`0'"'. Here’s the final version.
program define echo

version 9.1
if `"`0'"' != "" display as text `"`0'"'

end

43

You will notice that I got rid of the capture drop line. This is because we are now ready
to save the program as an ado file. Type sysdir to find out where your personal ado
directory is, and then save the file there with the name echo.ado. The command will now
be available any time you use Stata.

(As a footnote, you would want to make sure that there is no official Stata command called
echo. To do this I typed which echo. Stata replied “command echo not found as either
built-in or ado-file”. Of course there is no guarantee that they will not write one; Stata
reserves all english words.)

4.3.4 Positional Arguments

In addition to storing all arguments together in local macro 0, Stata parses the arguments
(using white space as a delimiter) and stores all the words it finds in local macros 1, 2, 3,
etc.

Typically you would do something with `1' and then move on to the next one. The command
mac shift comes handy then, because it shifts all the macros down by one, so the contents
of 2 is now in 1, and 3 is in 2, and so on. This way you always work with what’s in 1 and
shift down. When the list is exhausted 1 is empty and you are done.

So here is the canonical program that lists its arguments
capture program drop echo
program define echo

version 9.1
while "`1'" != "" {

display `"`1'"'
mac shift

}
end

Don’t forget the mac shift, otherwise your program may run forever. (Or until you hit the
break key.)

Try echo one two three testing. Now try echo one "two and three" four. Notice
how one can group words into a single argument by using quotes.

This method is useful, and sometimes one can given the arguments more meaningful names
using args, but we will move on to the next level, which is a lot more powerful and robust.

(By the way one can pass arguments not just to commands, but to do files as well. Type
help do to learn more.)

4.3.5 Using Stata Syntax

If your command uses standard Stata syntax, which means the arguments are a list of
variables, possibly a weight, maybe an if or in clause, and perhaps a bunch of options, you
can take advantage of Stata’s own parser, which conveniently stores all these elements in
local macros ready for you to use.

44

A Command Prototype Let us write a command that computes the probability of marrying
by a certain age in a Coale-McNeil model with a given mean, standard deviation, and
proportion marrying. The syntax of our proposed command is

pnupt age, generate(married) [mean(25) stdev(5) pem(1)]

So we require an existing variable with age in exact years, and a mandatory option specifying
a new variable to be generated with the proportions married. There are also options to
specify the mean, the standard deviation, and the proportion ever married in the schedule,
all with defaults. Here’s a first cut at the command

capture program drop pnupt
program define pnupt

version 9.1
syntax varname, Generate(name) ///

[Mean(real 25) Stdev(real 5) Pem(real 1)]
// ... we don't do anything yet ...

end

The first thing to note is that the syntax command looks remarkably like our prototype.
That’s how easy this is.

Variable Lists The first element in our syntax is an example of a list of variables or varlist.
You can specify minima and maxima, for example a program requiring exactly two variables
would say varlist(min=2 max=2). When you have only one variable, as we do, you can
type varname, which is short for varlist(min=1 max=1).

Stata will then make sure that your program is called with exactly one name of an existing
variable, which will be stored in a local macro called varlist. (The macro is always called
varlist, even if you have only one variable and used varname in your syntax statement.)
Try pnupt nonesuch and Stata will complain, saying “variable nonesuch not found”.

(If you have done programming before, and you spent 75% of your time writing checks
for input errors and only 25% focusing on the task at hand, you will really appreciate the
syntax command. It does a lot of error checking for you.)

Options and Defaults Optional syntax elements are enclosed in square brackets [and].
In our command the generate option is required but the other three are optional. Try these
commands to generate a little test dataset with an age variable ranging from 15 to 50

drop _all
set obs 36
gen age = 14 + _n

Now try pnupt age. This time Stata is happy with age but notes ‘option generate() required’.
Did I say syntax saves a lot of work? Options that take arguments need to specify the type
of argument (integer, real, string, name) and, optionally, a default value. Our generate
takes a name, and is required, so there is no default. Try pnupt age, gen(2). Stata will
complain that 2 is not a name.

45

If all is well, the contents of the option is stored in a local macro with the same name as the
option, here generate.

Checking Arguments Now we need to do just a bit of work to check that the name is a
valid variable name, which we do with confirm:

confirm new variable `generate'

Stata then checks that you could in fact generate this variable, and if not issues error 110.
Try pnupt age, gen(age) and Stata will say ‘age already defined’.

It should be clear by now that Stata will check that if you specify a mean, standard deviation
or proportion ever married, abbreviated as m(), s() and p(), they will be real numbers,
which will be stored in local macros called mean„ stdev, and pem. If an option is omitted
the local macro will contain the default.

You could do more checks on the input. Let’s do a quick check that all three parameters are
non-negative and the proportion is no more than one.

if (`mean' <= 0 | `stdev' <= 0 | `pem' <= 0 | `pem' > 1) {
di as error "invalid parameters"
exit 110

}

You could be nicer to your users and have separate checks for each parameter, but this will
do for now.

Temporary Variables We are now ready to do some calculations. We take advantage of
the relation between the Coale-McNeil model and the gamma distribution, as explained in
Rodríguez and Trussell (1980). Here’s a working version of the program

program define pnupt
*! Coale-McNeil cumulative nuptiality schedule v1 GR 24-Feb-06

version 9.1
syntax varname, Generate(name) [Mean(real 25) Stdev(real 5) Pem(real 1)]
confirm new var `generate'
if `mean' <= 0 | `stdev' <= 0 | `pem' <= 0 | `pem' > 1 {

display as error "invalid parameters"
exit 198

}
tempname z g
gen `z' = (`varlist' - `mean')/`stdev'
gen `g' = gammap(0.604, exp(-1.896 * (`z' + 0.805)))
gen `generate' = `pem' * (1 - `g')

end

We could have written the formula for the probability in one line but only by sacrificing
readability. Instead we first standardize age, by subtracting the mean and dividing by the
standard deviation. What can we call this variable? You might be tempted to call it z, but
what if the user of your program has a variable called z? Later we evaluate the gamma
function. What can we call the result?

46

The solution is the tempname command, which asks Stata to make up unique temporary
variable names, in this case two to be stored in local macros z and g. Because these macros
are local, there is no risk of name conflicts. Another feature of temporary variables is that
they disappear automatically when your program ends, so Stata does the housekeeping for
you.

The line gen `z' = (`varlist' - `mean')/`stdev' probably looks a bit strange at first.
Remember that all quantities of interest are now stored in local macros and we need to
evaluate them to get anywhere, hence the profusion of backticks: `z' gets the name of our
temporary variable, `varlist' gets the name of the age variable specified by the user, `mean'
gets the value of the mean, and `stdev' gets the value of the standard deviation. After
macro substitution this line will read something like gen _000001 = (age-22.44)/5.28,
which probably makes a lot more sense.

If/In You might consider allowing the user to specify if and in conditions for your
command. These would need to be added to the syntax, where they would be stored in local
macros, which can then be used in the calculations, in this case passed along to generate.

For a more detailed discussion of this subject type help syntax and select if and then in.
The entry in help mark is also relevant.

4.3.6 Creating New Variables

Sometimes all your command will do is create a new variable. This, in fact, is what our
little command does. Wouldn’t it be nice if we could use an egen type of command like this:

egen married = pnupt(age), mean(22.48) stdev(5.29) pem(0.858)

Well, we can! As it happens, egen is user-extendable. To implement a function called pnupt
you have to create a program (ado file) called _gpnupt, in other words add the prefix _g.
The documentation on egen extensions is a bit sparse, but once you know this basic fact all
you need to do is look at the source of an egen command and copy it. (I looked at _gmean.)

So here’s the egen version of our Coale-McNeil command.
program define _gpnupt
*! Coale-McNeil cumulative nuptiality schedule v1 GR 24-Feb-06

version 9.1
syntax newvarname=/exp [, Mean(real 25) Stdev(real 5) Pem(real 1)]
if `mean' <= 0 | `stdev' <= 0 | `pem' <= 0 | `pem' > 1 {

display as error "invalid parameters"
exit 198

}
tempname z g
gen `z' = (`exp' - `mean')/`stdev'
gen `g' = gammap(0.604, exp(-1.896 * (`z' + 0.805)))
gen `typlist' `varlist' = `pem' * (1 - `g')

end

There are very few differences between this program and the previous one. Instead of an

47

input variable egen accepts an expression, which gets evaluated and stored in a temporary
variable called exp. The output variable is specified as a varlist, in this case a newvarname.
That’s why z now works with exp, and gen creates varlist. The mysterious typlist is
there because egen lets you specify the type of the output variable (float by default) and
that gets passed to our function, which passes it along to gen.

4.3.7 A Coale-McNeil Fit

We are ready to reveal how the initial plot was produced. The data are available in a Stata
file in the demography section of my website, which has counts of ever married and single
women by age. We compute the observed proportion married, compute fitted values based
on the estimates in Rodríguez and Trussell (1980), and plot the results. It’s all done in a
handful of lines

. use https://data.princeton.edu/eco572/datasets/cohhnupt, clear
(WFS Colombia Household Survey)
. gen agem = age + 0.5
. gen obs = ever/total
. egen fit = pnupt(agem), mean(22.44) stdev(5.28) pem(.858)
. twoway (scatter obs agem) (line fit agem), ///
> title(Proportions Married by Age) subtitle(Colombia 1976) ///
> ytitle(Proportion married) xtitle(age)
. graph export cchhnup.png, width(500) replace
(file cchhnup.png written in PNG format)

The actual estimation can be implemented using Stata’s maximum likelihood procedures,
but that’s a story for another day.

4.4 Other Topics
To keep this tutorial short I haven’t discussed returning values from your program, type
help return to learn more. For related subjects on estimation commands, which can
post estimation results, see help ereturn and help _estimates. An essential reference
on estimation is Maximum Likelihood Estimation with Stata, Fourth Edition, by Gould,
Pitblado and Poi (2010).

Other subjects of interest are matrices (start with help matrix), and how to make commands
“byable” (type help byable). To format your output you need to learn more about SMCL,
start with help smcl. For work on graphics you may want to study class programming
(help class) and learn about sersets (help serset). To provide a graphical user interface
to your command try help dialog programming. It is also possible to read and write text
and binary files (see help file).

The biggest omission is Mata, a full-fledged matrix programming language that was intro-
duced in Version 9 of Stata. Mata is compiled to byte code, so it is much faster than Stata’s
classic ado programs. I find that the best way to write new Stata commands is to use classic
ado for the user interface and Mata for the actual calculations. If you are interested in
learning Mata I strongly recommend Gould’s (2018) The Mata Book.

48

References
Acock, Alan C. 2018. A Gentle Introduction to Stata. Sixth Edition. College Station, TX:

Stata Press.

Baum, Christopher F. 2016. An Introduction to Stata Programming. 2nd edition. College
Station, TX: Stata Press.

Cleves, Mario, William Gould, and Julia Marchenko. 2016. An Introduction to Survival
Analysis Using Stata. Revised 3rd edition. College Station, TX: Stata Press.

Gould, William W. 2018. The Mata Book: A Book for Serious Programmers and Those
Who Want to Be. College Station, TX: Stata Press.

Gould, William W., Jeffrey Pitblado, and Brian Poi. 2010. Maximum Likelihood Estimation
with Stata. College Station, TX: Stata Press.

Long, Scott, and Jeremy Freese. 2014. Regression Models for Categorical Dependent
Variables Using Stata. 3rd edition. College Station, TX: Stata Press.

Mitchell, Michael N. 2012. A Visual Guide to Stata Graphics. 3rd edition. College Station,
TX: Stata Press.

Rodríguez, Germán, and James Trussell. 1980. “Maximum Likelihood Estimation of the
Parameters of Coale’s Model Nuptiality Schedule from Survey Data.” Technical Bulletin
7. World Fertility Survey.

49

	1 Introduction
	1.1 A Quick Tour of Stata
	1.1.1 The Stata Interface
	1.1.2 Typing Commands
	1.1.3 Getting Help
	1.1.4 Loading a Sample Data File
	1.1.5 Descriptive Statistics
	1.1.6 Drawing a Scatterplot
	1.1.7 Computing New Variables
	1.1.8 Simple Linear Regression
	1.1.9 Post-Estimation Commands
	1.1.10 Plotting the Data and a Linear Fit
	1.1.11 Listing Selected Observations
	1.1.12 Saving your Work and Exiting Stata

	1.2 Using Stata Effectively
	1.2.1 Create a Project Directory
	1.2.2 Open a Log File
	1.2.3 Always Use a Do File
	1.2.4 Use Comments and Annotations
	1.2.5 Continuation Lines
	1.2.6 A Sample Do File
	1.2.7 Stata Command Syntax

	1.3 Stata Resources
	1.3.1 Online Resources
	1.3.2 Manuals and Books

	2 Data Management
	2.1 Stata Files
	2.1.1 Variable Names
	2.1.2 Variable Types
	2.1.3 Missing Values

	2.2 Reading Data Into Stata
	2.2.1 Free Format
	2.2.2 Fixed Format

	2.3 Data Documentation
	2.3.1 Data Label and Notes
	2.3.2 Variable Labels and Notes
	2.3.3 Value Labels
	2.3.4 Multilingual Labels*

	2.4 Creating New Variables
	2.4.1 Generate and Replace
	2.4.2 Operators and Expressions
	2.4.3 Functions
	2.4.4 Recoding Variables

	2.5 Managing Stata Files
	2.6 Data Frames

	3 Stata Graphics
	3.1 Scatterplots
	3.1.1 A Simple Scatterplot
	3.1.2 Fitted Lines
	3.1.3 Labeling Points
	3.1.4 Titles, Legends and Captions
	3.1.5 Axis Scales and Labels

	3.2 Line Plots
	3.2.1 A Simple Line Plot
	3.2.2 Titles and Legends
	3.2.3 Line Styles
	3.2.4 Scale Options
	3.2.5 Graph Schemes

	3.3 Other Graphs
	3.3.1 Bar Graphs
	3.3.2 Box Plots
	3.3.3 Kernel Density Estimates

	3.4 Managing Graphs

	4 Programming Stata
	4.1 Macros
	4.1.1 Storing Text in Local Macros
	4.1.2 Storing Results in Local Macros
	4.1.3 Keyboard Mapping with Global Macros
	4.1.4 More on Macros

	4.2 Looping
	4.2.1 Looping Over Sequences of Numbers
	4.2.2 Looping Over Elements in a List
	4.2.3 Looping Over Specialized Lists
	4.2.4 Looping for a While
	4.2.5 Conditional Execution

	4.3 Writing Commands
	4.3.1 Programs With No Arguments
	4.3.2 A Program with an Argument
	4.3.3 Compound Quotes
	4.3.4 Positional Arguments
	4.3.5 Using Stata Syntax
	4.3.6 Creating New Variables
	4.3.7 A Coale-McNeil Fit

	4.4 Other Topics
	References

